
Trigonometry/Pre-Calculus Exam 7

Mamai	Data	D:1.	
Name:	Date:	Period:	

Show all your work neatly and clearly. Calculators are allowed on the exam; however, each question is worth multiple points. Therefore, it is pertinent that you show all your work to receive the maximum amount of points on each question. Draw a box around your answer.

1. Factor; then use fundamental identities to simplify the expression below.

2. Multiply; then use fundamental identities to simplify the expression below.

$$(2-2\cos x)(2+2\cos x)$$

$$4+4\cos x-4\cos x-4\cos^2 x$$

$$4(1-\cos^2 x)=4\sin^2 x$$

3. Add or subtract as indicated; then use fundamental identities to simplify the expression below.

$$\frac{\left(1-\text{Tunx}\right)}{\left(1-\text{Tunx}\right)}\frac{1}{1+\tan x} + \frac{1}{1-\tan x}\left(1+\text{Tunx}\right)$$

4. If $x = 7 \cot \theta$, use trigonometric substitution to write $\sqrt{49 + x^2}$ as a trigonometric

 $\sqrt{44 + 44 \cot^2 \varphi}$ Exam 6 | Version 2 | Page 1

5. Verify the identity shown below.

$$\frac{\sec\theta + \tan\theta}{\sec^2\theta} = \cos\theta(1 + \sin\theta)$$

$$\frac{\sec\theta + \tan\theta}{\sec^2\theta} = \cos\theta(1 + \sin\theta)$$

$$\cos\theta + \sin\theta \cdot \cos\theta$$

$$\cos\theta + \sin\theta + \sin\theta$$

$$\cos\theta + \sin\theta$$

$$\cos\theta + \sin\theta + \sin\theta$$

$$\cos\theta + \sin\theta$$

$$\cos\theta$$

$$\cos\theta + \sin\theta$$

$$\cos\theta$$

$$\cos\theta + \sin\theta$$

$$\cos\theta$$

$$\cos\theta + \sin\theta$$

$$\cos\theta$$

6. Verify the identity shown below.

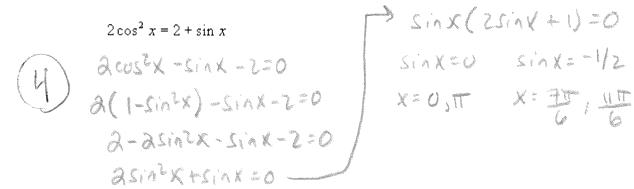
7. Verify the identity shown below.

$$5 \frac{(1-\sin\theta)}{1+\sin\theta} = 2\sec^2\theta - 2\sec\theta\tan\theta - 1$$

$$2\sin\theta + \sin\theta$$

$$\cos\theta = 2\sin\theta + \sin\theta$$

$$\cos\theta = 2\sin\theta$$


$$\cos\theta = 2\sin\theta + \sin\theta$$

8. Verify the identity shown below.

$$\sec^2 \mu - \cot^2 \left(\frac{\pi}{2} - \mu\right) = 1$$

$$= 500 \mu - \tan^2 x$$

9. Find all solutions of the following equation in the interval $[0,2\pi)$.

10. Solve the multiple-angle equation in the interval $[0, 2\pi)$.

$$\tan 2x = -1$$

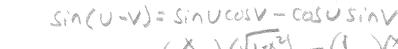
11. Find the exact value of the given expression using a sum or difference formula.

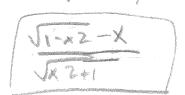
$$\cos\frac{5\pi}{12} = \cos\frac{75}{2} = \cos\left(45^{\circ} + 30^{\circ}\right)$$

$$= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 45^{\circ}$$

$$= \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 45^{\circ}$$

Find the exact value of $\sin(u+v)$ given that $\sin u = \frac{8}{17}$ and $\cos v = -\frac{60}{61}$. (Both u and v are in Quadrant II.)




13. Write the given expression as an algebraic expression. $\sin(\arctan x - \arcsin x)$

$$\sin(\arctan x - \arcsin x)$$

Tunu = X Sinv = X

14. Simplify the given expression algebraically.

$$\sin(\pi+x) = \sin(\pi+\cos x) + \cos(\pi+\sin x)$$

15. Find the exact solutions of the given equation in the interval $[0,2\pi)$.

$$\sin 2x = \sin x$$

Sinzx - Sinx = 0

2 SINK COSK - SINK = O

Sinx (acosx -1) = 0

Sinx=0 COSX=12

[X=0, T X=1/3, 5]

16. Use a double angle formula to rewrite the given expression.

$$10\cos^2 x - 5$$

17. Use the power-reducing formulas to rewrite the given expression in terms of the first power of the cosine.

$$\sin^4 x = \sin^2 x \cdot \sin^2 x$$

18. Use the half-angle formula to simplify the given expression.

$$\sqrt{\frac{1+\cos 24x}{2}}$$

19. Use the product-to-sum formula to write the given product as a sum or difference.

$$8\sin\frac{\pi}{6}\sin\frac{\pi}{6}$$

20. Use the sum-to-product formulas to find the exact value of the given expression.

$$2\cos\left(\frac{150^{\circ}+30^{\circ}}{2}\right)\sin\left(\frac{150^{\circ}-30^{\circ}}{2}\right)$$

$$3\cos\left(\frac{150^{\circ}+30^{\circ}}{2}\right)\sin\left(\frac{150^{\circ}-30^{\circ}}{2}\right)$$
Exam 6 | Version 2 | Page 5

			٠	*