х	2	5	10	14
f(x)	12	28	34	30

1. The function f is continuous on the closed interval [2, 14] and has values as shown in the table above. Using the subintervals [2, 5], [5, 10], and [10, 14], what is the approximation of $\int_{2}^{14} f(x) dx$ found by using a right Riemann sum?

(A) 296

(B) 312

(C) 343

(D) 374

(E) 390

x	2	5	7	8
f(x)	10	30	40	20

2. The function f is continuous on the closed interval [2, 8] and has values that are given in the table above. Using the subintervals [2, 5], [5, 7], and [7, 8], what is the trapezoidal approximation of $\int_2^8 f(x)dx$?

(A) 110

(B) 130

(C) 160

(D) 190

(E) 210

t (sec)	0	2	4	6
a(t) (ft/sec ²)	5	2	8	3

3. The data for the acceleration a(t) of a car from 0 to 6 seconds are given in the table above. If the velocity at t=0 is 11 feet per second, the approximate value of the velocity at t=6, computed using a left-hand Riemann sum with three subintervals of equal length, is

(A) 26 ft/sec

(B) 30 ft/sec

(C) 37 ft/sec

(D) 39 ft/sec

(E) 41 ft/sec

x	0	0.5	1.0	1.5	2.0
f(x)	3	3	5	8	13

4. A table of values for a continuous function f is shown above. If four equal subintervals of [0,2] are used, which of the following is the trapezoidal approximation of $\int_0^2 f(x) dx$?

(A) 8

(B) 12

(C) 1

(D) 24

(E) 32

5. The expression $\frac{1}{50} \left(\sqrt{\frac{1}{50}} + \sqrt{\frac{2}{50}} + \sqrt{\frac{3}{50}} + \dots + \sqrt{\frac{50}{50}} \right)$ is a Riemann sum approximation for

$$(A) \int_0^1 \sqrt{\frac{x}{50}} \ dx$$

(B)
$$\int_0^1 \sqrt{x} dx$$

(C)
$$\frac{1}{50} \int_0^1 \sqrt{\frac{x}{50}} \ dx$$

(D)
$$\frac{1}{50} \int_0^1 \sqrt{x} \ dx$$

(E)
$$\frac{1}{50} \int_0^{50} \sqrt{x} \, dx$$

6. If a trapezoidal sum overapproximates $\int_0^4 f(x)dx$, and a right Riemann sum underapproximates $\int_0^4 f(x)dx$, which of the following could be the graph of y = f(x)?

2007 AB5 BC5

t (minutes)	0	2	5	7	11	12
r'(t) (feet per minute)	5.7	4.0	2.0	1.2	0.3	0.5

The volume of a spherical hot air balloon expands as the air inside the balloon is heated. The radius of the balloon, in feet, is modeled by a twice-differentiable function r of time t, where t is measured in minutes. For 0 < t < 12, the graph of r is concave down. The table above gives selected values of the rate of change, r'(t), of the radius of the balloon over the time interval $0 \le t \le 12$. The radius of the balloon is 30 feet when t = 5. (Note: The volume of a sphere of radius r is given by $V = \frac{4}{3}\pi r^3$.)

- (c) Use a right Riemann sum with the five subintervals indicated by the data in the table to approximate $\int_0^{12} r'(t) dt$. Using correct units, explain the meaning of $\int_0^{12} r'(t) dt$ in terms of the radius of the balloon.
- (d) Is your approximation in part (c) greater than or less than $\int_0^{12} r'(t) dt$? Give a reason for your answer.

2004 AB 3 BC 3 (Form B)

t (minutes)	0	5	10	15	20	25	30	35	40
v(t) (miles per minute)	7.0	9.2	9.5	7.0	4.5	2.4	2.4	4.3	7.3

A test plane flies in a straight line with positive velocity v(t), in miles per minute at time t minutes, where v is a differentiable function of t. Selected values of v(t) for $0 \le t \le 40$ are shown in the table above.

(a) Use a midpoint Riemann sum with four subintervals of equal length and values from the table to approximate $\int\limits_0^{40} v(t) \, dt$. Show the computations that lead to your answer. Using correct units, explain the meaning of $\int\limits_0^{40} v(t) \, dt$ in terms of the plane's flight.

- 4. The graph of a differentiable function f on the closed interval [-3, 15] is shown in the figure above. The graph of f has a horizontal tangent line at x = 6. Let $g(x) = 5 + \int_{6}^{x} f(t) dt$ for $-3 \le x \le 15$.
 - (d) Find a trapezoidal approximation of $\int_{-3}^{15} f(t)dt$ using six subintervals of length $\Delta t = 3$.

2001 AB 2 and BC 2

t	W(t)
(days)	(°C)
0	20
3	31
6	28
9	24
12	22
15	21

The temperature, in degrees Celsius (${}^{\circ}C$), of the water in a pond is a differentiable function W of time t. The table above shows the water temperature as recorded every 3 days over a 15-day period.

(b) Approximate the average temperature, in degrees Celsius, of the water over the time interval $0 \le t \le 15$ days by using a trapezoidal approximation with subintervals of length $\Delta t = 3$ days.

Student Notes

Riemann Sums and Trapezoidal Approximations

1999 AB 3 and BC 3

t	R(t)		
(hours)	(gallons per hour)		
0	9.6		
3	10.4		
6	10.8		
9	11.2		
12	11.4		
15	11.3		
18	10.7		
21	10.2		
24	9.6		

The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t. The table above shows the rate as measured every 3 hours for a 24-hour period.

- (a) Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate $\int_0^{24} R(t) dt$. Using correct units, explain the meaning of your answer in terms of water flow.
- (b) Is there some time t, 0 < t < 24, such that R'(t) = 0? Justify your answer.
- (c) The rate of water flow R(t) can be approximated by $Q(t) = \frac{1}{79} \left(768 + 23t t^2\right)$. Use Q(t) to approximate the average rate of water flow during the 24-hour time period. Indicate units of measure.

