The graph of the function f is shown in the figure above. Which of the following statements about f is true?

a. $\lim_{x \to a} f(x) = \lim_{x \to b} f(x)$
b. $\lim_{x \to a} f(x) = 2$
c. $\lim_{x \to b} f(x) = 2$
d. $\lim_{x \to b} f(x) = 1$
e. $\lim_{x \to a} f(x)$ does not exist
The graph of the function f is shown in the figure above. Which of the following statements about f is true?

a. $\lim_{x \to a} f(x) = \lim_{x \to b} f(x)$

b. $\lim_{x \to a} f(x) = 2$

c. $\lim_{x \to b} f(x) = 2$

d. $\lim_{x \to b} f(x) = 1$

e. $\lim_{x \to a} f(x)$ does not exist
2. The graph of the function f is shown in the figure above. The value of $\lim_{x \to 1} \sin(f(x))$ is

a. 0.909
b. 0.841
c. 0.141
d. -0.416
e. nonexistent

3. For which of the following does $\lim_{x \to 4} f(x)$ exist?

I.

![Graph of f](image1)

II.

![Graph of f](image2)

III.

![Graph of f](image3)

a. I only
b. II only
c. III only
d. I and II only
e. I and III only
4. The graph of a function \(f \) is shown above. At which value of \(x \) is \(f \) continuous, but not differentiable?

a. \(a \)
b. \(b \)
c. \(c \)
d. \(d \)
e. \(e \)

5. \(\lim_{x \to 0} \frac{x^3 - 2x^2 + 3x - 4}{4x^3 - 3x^2 + 2x - 1} = \)

a. 4
b. 1
c. \(\frac{1}{4} \)
d. 0
e. -1

6. If \(a \neq 0 \), then \(\lim_{x \to a} \frac{x^2 - a^2}{x^2 - a^4} \) is

a. \(\frac{1}{a^2} \)
b. \(\frac{1}{2a^2} \)
c. \(\frac{1}{6a^2} \)
d. 0
e. nonexistent
7. Let \(f \) be the function given by \(f(x) = \frac{(x-1)(x^2-4)}{x^2-a} \). For what positive values of \(a \) is \(f \) continuous for all real numbers \(x \)?
 a. None
 b. 1 only
 c. 2 only
 d. 4 only
 e. 1 and 4 only

8. If \(f(x) = \begin{cases} \ln x & \text{for } 0 < x \leq 2 \\ x^2 \ln 2 & \text{for } 2 < x < 4, \end{cases} \) the \(\lim_{x \to 2} f(x) \) is
 a. \(\ln 2 \)
 b. \(\ln 8 \)
 c. \(\ln 16 \)
 d. 4
 e. nonexistent

9. \(f(x) = \begin{cases} x+2 & \text{if } x \leq 3 \\ 4x-7 & \text{if } x > 3 \end{cases} \)
 Let \(f \) be the function given above. Which of the following statements are true about \(f \)?
 I. \(\lim_{x \to 3} f(x) \) exists
 II. \(f \) is continuous at \(x = 3 \)
 III. \(f \) is differentiable at \(x = 3 \)
 a. None
 b. I only
 c. II only
 d. I and II only
 e. I, II, and III

10. Let \(f \) be a function such that \(\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = 5 \). Which of the following must be true?
 I. \(f \) is continuous at \(x = 2 \)
 II. \(f \) is differentiable at \(x = 2 \)
 III. The derivative of \(f \) is continuous at \(x = 2 \)
 a. I only
 b. II only
 c. I and II only
 d. I and III only
 e. II and III only
2. Let f be the function given by $f(x) = 2xe^{2x}$.

(a) Find $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$.

(b) Find the absolute minimum value of f. Justify that your answer is an absolute minimum.

(c) What is the range of f?

(d) Consider the family of functions defined by $y = bxe^{bx}$, where b is a nonzero constant. Show that the absolute minimum value of bxe^{bx} is the same for all nonzero values of b.

6. Let f be the function defined by

$$f(x) = \begin{cases} \sqrt{x} + 1 & \text{for } 0 \leq x \leq 3 \\ 5 - x & \text{for } 3 < x \leq 5. \end{cases}$$

(a) Is f continuous at $x = 3$? Explain why or why not.

(b) Find the average value of $f(x)$ on the closed interval $0 \leq x \leq 5$.

(c) Suppose the function g is defined by

$$g(x) = \begin{cases} k\sqrt{x} + 1 & \text{for } 0 \leq x \leq 3 \\ mx + 2 & \text{for } 3 < x \leq 5, \end{cases}$$

where k and m are constants. If g is differentiable at $x = 3$, what are the values of k and m?
1998 Calculus AB Scoring Guidelines

2. Let f be the function given by $f(x) = 2xe^{2x}$.

(a) Find $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to \infty} f(x)$.

(b) Find the absolute minimum value of f. Justify that your answer is an absolute minimum.

(c) What is the range of f?

(d) Consider the family of functions defined by $y = bxe^{bx}$, where b is a nonzero constant. Show that the absolute minimum value of bxe^{bx} is the same for all nonzero values of b.

| (a) $\lim_{x \to -\infty} 2xe^{2x} = 0$ | 2 | 1: 0 as $x \to -\infty$
$\lim_{x \to \infty} 2xe^{2x} = \infty$ or DNE	\{	1: ∞ or DNE as $x \to \infty$
(b) $f'(x) = 2e^{2x} + 2x \cdot 2e^{2x} = 2e^{2x}(1 + 2x) = 0$	\{	1: solves $f'(x) = 0$
if $x = -1/2$	\{	1: evaluates f at student’s critical point
$f(-1/2) = -1/e$ or -0.368 or -0.367	\{	0/1 if not local minimum from student’s derivative
$-1/e$ is an absolute minimum value because:	\{	1: justifies absolute minimum value
(i) $f'(x) < 0$ for all $x < -1/2$ and	\{	0/1 for a local argument
$f'(x) > 0$ for all $x > -1/2$	\{	0/1 without explicit symbolic derivative
-or-		Note: 0/3 if no absolute minimum based on student’s derivative
(ii) $\frac{f'(x)}{-1/2} = +$		1: answer
and $x = -1/2$ is the only critical number		Note: must include the left-hand endpoint; exclude the right-hand “endpoint”
(c) Range of $f = [-1/e, \infty)$	\{	1: sets $y' = be^{bx}(1 + bx) = 0$
or $[-0.367, \infty)$	\{	1: solves student’s $y' = 0$
or $[-0.368, \infty)$	\{	1: evaluates y at a critical number
(d) $y' = be^{bx} + b^2xe^{bx} = be^{bx}(1 + bx) = 0$	\{	and gets a value independent of b
if $x = -1/b$	\{	Note: 0/3 if only considering specific values of b
At $x = -1/b$, $y = -1/e$		3
y has an absolute minimum value of $-1/e$ for all nonzero b		1:

Copyright ©1998 College Entrance Examination Board. All rights reserved.
Advanced Placement Program and AP are registered trademarks of the College Entrance Examination Board.
Let f be the function defined by

$$f(x) = \begin{cases} \sqrt{x+1} & \text{for } 0 \leq x \leq 3 \\ 5 - x & \text{for } 3 < x \leq 5. \end{cases}$$

(a) Is f continuous at $x = 3$? Explain why or why not.
(b) Find the average value of $f(x)$ on the closed interval $0 \leq x \leq 5$.
(c) Suppose the function g is defined by

$$g(x) = \begin{cases} k\sqrt{x+1} & \text{for } 0 \leq x \leq 3 \\ mx + 2 & \text{for } 3 < x \leq 5, \end{cases}$$

where k and m are constants. If g is differentiable at $x = 3$, what are the values of k and m?

(a) f is continuous at $x = 3$ because

$$\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = 2.$$

Therefore, $\lim_{x \to 3} f(x) = 2 = f(3)$.

(b) $\int_0^5 f(x) \, dx = \int_0^3 f(x) \, dx + \int_3^5 f(x) \, dx$

$$= \left[\frac{2}{3} (x + 1)^{3/2} + \left(5x - \frac{1}{2} x^2 \right) \right]_3^5
= \left(\frac{16}{3} - \frac{2}{3} \right) + \left(\frac{25}{2} - \frac{21}{2} \right) = \frac{20}{3}$$

Average value: $\frac{1}{5} \int_0^5 f(x) \, dx = \frac{4}{5}$

(c) Since g is continuous at $x = 3$, $2k = 3m + 2$.

$$g'(x) = \begin{cases} \frac{k}{2\sqrt{x+1}} & \text{for } 0 < x < 3 \\ \frac{m}{x} & \text{for } 3 < x < 5 \end{cases}$$

$$\lim_{x \to 3^-} g'(x) = \frac{k}{4} \text{ and } \lim_{x \to 3^+} g'(x) = m$$

Since these two limits exist and g is differentiable at $x = 3$, the two limits are equal. Thus $\frac{k}{4} = m$.

$$8m = 3m + 2; \quad m = \frac{2}{5} \text{ and } k = \frac{8}{5}$$