Section 4.4-4.6 & 7.1-7-2 Exam

Name:	Date:	Period:	
manne.	Date.	i cilou.	

Show all work neatly and clearly. You will be graded on your completeness and ability to derive the correct answer.

156 + 486

6421

$$\int u^{4}(2+u^{5})^{5} du$$

$$= \frac{1}{5} \int 5v^{4}(2+v^{5})^{5} dv$$

$$= \frac{1}{6} \cdot (2+v^{5})^{6}$$

$$= \frac{1}{6} \cdot (2+v^{5})^{6}$$

$$= \frac{1}{6} \cdot (2+v^{5})^{6}$$

$$\int \frac{1-\csc x \cot x \, dx}{\int \int \frac{1-\csc x \cot x \, dx}{\int \int \frac{1-\csc x \cot x \, dx}{\int \int \frac{1-\cos x \, dx}{$$

$$\frac{3}{2} 7. \int \frac{x}{x^2 + 4} dx$$

$$= \frac{1}{2} \int \frac{2x}{x^2 + 4} dx = \int \ln(x^2 + 4) + C$$

$$\frac{3}{8} \cdot \int \frac{\cos x}{\sin^5 x} dx$$

$$= -\int \frac{-\cos x}{\sin^5 x} = \left(\frac{\sin x}{\sin^5 x}\right) + C$$

Find y'

9.
$$y = \int_{0}^{\sin x} \sqrt{t} dt$$

10.
$$y = \int_{0}^{3x} \sqrt{1 + t^3} dt$$

 $11.\,$ Find the average value of the function over the given interval and all values x in the interval for which the function equals its average value

$$f(x) = \frac{x^2 + 5}{x^2}, \ 1 \le x \le 3$$

$$f(c) = \frac{1}{3 - 1} \int_{1}^{3} (1 + 5x^2) dx$$

$$= \frac{1}{2} \left[x + 5x \right]_{3}^{3} = \frac{1}{2} \left[\frac{1}{3} + 4 \right]_{1}^{3} = \frac{1}{2} \left[\frac{1}{3} + 4 \right]_{2}^{3} = \frac{1}{3}$$

12. Sketch and shade the enclosed figure. Find the area of the region bounded by the graphs of the equations.

of the equations.

$$f(x) = x^3 - 2x + 1$$
, $g(x) = -2x$, $x = 1$

$$A = \int_{-1}^{1} (x^{3} - 2x + 1 - (-2x)) dx$$

$$= \int_{-1}^{1} (x^{3}+1) dx$$

$$= x^{4}+x \int_{-1}^{1} = [3]$$

the equations
$$y = \sin x$$
 $y = 0, 0 \le x \le \frac{\pi}{2}$ about the line $y = 10$

$$V = \prod_{i=1}^{n} \left[10^{2} - (10 - \sin x)^{2} \right] dx$$

$$V = \prod_{i=1}^{n} \left[10^{2} - (10 - \sin x)^{2} \right] dx$$

*BONUS Problem: Write the integral that would give the volume of the solid whose base is bounded by the circle $x^2 + y^2 = 9$ and the cross section perpendicular to the x-axis are squares.

